Wednesday, April 7, 2021

Tugas 3 Rangkuman Gerbang Logika dan Aljabar Boolean

Gerbang Logika dan Aljabar Boolean

*Sekarang kita telah mengetahui konsep bilangan biner, dan kita akan mempelajari cara menggambarkan bagaimana sistem menggunakan menggunakan level logika biner dalam membuat keputusan. 

* Aljabar Boolean adalah alat yang penting dalam menggambarkan, menganalisa, merancang, dan mengimplementasikan rangkaian digital.


Konstanta Boolean dan Variabel.

Aljabar Boolean dibawah ini hanya mempunyai dua nilai : 0 dan 1.

  Logika 0 dapat dikatakan : false, off, low, no, saklar terbuka.

  Logika 1 dapat dikatakan: true, on, high, yes, saklar tertutup. 

 Tiga operasi logika dasar: OR, AND, dan NOT.


Tabel Kebenaran

 Sebuah tabel kebenaran menggambarkan hubungan antara input dan ouput sebuah rangkaian logika.

 Jumlah The number of entries corresponds to the number of inputs. For example a 2 input table would have 2 2 = 4 entries. A 3 input table would have 2 3 = 8 entries.

 Contoh tabel kebenaran dengan masukan 2, 3 dan 4 buah.




Operasional OR dengan gerbang OR

Ÿ  The Boolean expression for the OR operation is

         X = A + B

      Ÿ  This is read as “x equals A or B.”

      Ÿ  X = 1 when A = 1 or B = 1.

Ÿ  Truth table and circuit symbol for a two input OR  gate:

OR Operation With OR Gates

Ÿ  The OR operation is similar to addition but  when A = 1 and B = 1, the OR operation  produces 1 + 1 = 1.

Ÿ  In the Boolean expression

         x=1+1+1=1

We could say in English that x is true (1) when A is true

(1)    OR B is true (1) OR C is true (1).

Ÿ  There are many examples of applications  where an output function is desired when  one of multiple inputs is activated.

AND Operations with AND gates

Ÿ  The Boolean expression for the AND operation is

          X = A • B

      Ÿ  This is read as “x equals A and B.”

      Ÿ  x = 1 when A = 1 and B = 1.

Truth table and circuit symbol for a two input AND gate are  shown. Notice the difference between OR and AND gates

Ÿ  The AND operation is similar to multiplication.

Ÿ  In the Boolean expression

          X = A • B • C

          X  = 1 only when A = 1, B = 1, and C = 1.


NOT Operation

Ÿ  The Boolean expression for the NOT  operation is

                           X = A

Ÿ  This is read as:

Ÿ  x equals NOT A, or

Ÿ  x equals the inverse of A, or

Ÿ  x equals the complement of A

Ÿ  Truth table, symbol, and sample waveform  for the NOT circuit.

Describing Logic Circuits  Algebraically

Ÿ  The three basic Boolean operations (OR,  AND, NOT) can describe any logic circuit.

Ÿ  If an expression contains both AND and OR  gates the AND operation will be performed  first, unless there is a parenthesis in the  expression.

Ÿ  Examples of Boolean expressions for logic  circuits:





Ÿ  The output of an inverter is equivalent to the  input with a bar over it.    Input A through an  inverter equals A.

Ÿ  Examples using inverters.


Evaluating Logic Circuit Outputs

Ÿ  Rules for evaluating a Boolean expression:

Ÿ  Perform all inversions of single terms.

Ÿ  Perform all operations within parenthesis.

Ÿ  Perform AND operation before an OR operation  unless parenthesis indicate otherwise.

Ÿ  If an expression has a bar over it, perform the  operations inside the expression and then invert  the result.

Ÿ  Evaluate Boolean expressions by substituting  values and performing the indicated  operations:

A = 0, B = 1, C = 1, and D = 1  x = ABC(A + D)

= 0 ×1×1× (0 +1)

= 1×1×1× (0 +1)

= 1×1×1× (1)

= 1×1×1× 0

= 0

Ÿ  Output logic levels can be determined directly  from a circuit diagram.

Ÿ  The output of each gate is noted until a final  output is found.


Implementing Circuits From  Boolean Expressions

Ÿ  It is important to be able to draw a logic circuit from a  Boolean expression.

Ÿ  The expression

                   x = A ×B×C

could be drawn as a three input AND gate.

Ÿ  A more complex example such as

                y = AC + BC + ABC

could be drawn as two 2-input AND gates and one 3-input  AND gate feeding into a 3-input OR gate. Two of the AND  gates have inverted inputs.


NOR Gates and NAND Gates

Ÿ  Combine basic AND, OR, and NOT  operations.

Ÿ  The NOR gate is an inverted OR gate.     An  inversion “bubble” is placed at the output  of the OR gate.

The Boolean expression is,

Ÿ  The NAND gate is an inverted AND gate.  An inversion “bubble” is placed at the  output of the AND gate.

Ÿ  The Boolean expression is

        x = AB

Ÿ  The output of NAND and NOR gates may be  found by simply determining the output of an  AND or OR gate and inverting it.

Ÿ  The truth tables for NOR and NAND gates  show the complement of truth tables for OR  and AND gates.

Universality of NAND and NOR Gates

Ÿ  NAND or NOR gates can be used to create  the three basic logic expressions (OR, AND,  and INVERT)

Ÿ  This characteristic provides flexibility and is  very useful in logic circuit design.



IEEE/ANSI Standard Logic  Symbols

Ÿ  Compare the  IEEE/ANSI symbols  to traditional symbols.

Ÿ  These symbols are  not widely accepted  but may appear in  some schematics.




Application





Summary of Methods to Describe Logic Circuits

Ÿ  The three basic logic functions are AND, OR,  and NOT.

Ÿ  Logic functions allow us to represent a  decision process.

Ÿ  If it is raining OR it looks like rain I will take an  umbrella.

Ÿ  If I get paid AND I go to the bank I will have  money to spend.

 

sumber : https://onlinelearning.uhamka.ac.id

No comments:

Post a Comment

Fasilitas Online Learning UHAMKA Mempermudah Mahasiswa Belajar Virtual

Online Learning UHAMKA (OLU) adalah sebuah terobosan yang krusial demi memenuhi kebutuhan mahasiswa UHAMKA dalam menuntut ilmu tanpa harus ...