Wednesday, March 31, 2021

Tugas 2 Rangkuman Materi Sistem Bilangan

Sistem – Sistem Bilangan, Operasi dan kode 


Tujuan Topik Bahasan

  • Mengulas kembali sistem bilangan desimal.
  • Menghitung dalam bentuk bilangan biner.
  • Memindahkan dari bentuk bilangan desimal ke biner dan dalam biner ke dalam desimal.
  • Penggunaan operasi aritmatika pada bilangan biner.
  • Menentukan komplemen 1 dan 2 dari sebuah bilangan biner. 
  • Dan lain – lainnya……..

Sistem Bilangan

Sistem Biner dan Kode – kode digital merupakan dasar untuk komputer dan elektronika digital secara umum. Sistem bilangan biner seperti desimal, hexadesimal dan oktal juga dibahas pada bagian ini. Operasi aritmatika dengan bilangan biner akan dibahas untuk memberikan dasar pengertian bagaimana komputer dan jenis – jenis perangkat digital lain bekerja. 

Bilangan Desimal 

    Dalam setiap bilangan desimal terdiri dari 10 digit, 0 sampai dengan 9 

    Contoh:

  • Ungkapkan bilangan desimal 2745.214 sebagai penjumlahan nilai setiap digit.


Bilangan Biner
  • Sistem Bilangan biner merupakan cara lain untuk melambangkan kuantitas, dimana 1 (HIGH) dan 0 (LOW). 
  • Sistem bilangan biner mempunyai nilai basis 2 dengan nilai setiap posisi dibagi dengan faktor 2:

Contoh :

Konversikan seluruh bilangan biner 1101101 ke desimal





Aplikasi Digital

Ilustrasi sebuah penggunaan hitungan biner sederhana.

Konversi Desimal ke Biner

  • Metode Sum-of-Weight.


  • Pengulangan pembagian dengan Metode bilangan 2 (Repeated Division by 2 Method)
    • A systematic method of converting whole numbers from decimal to binary is the repeated division-by-2 process.  

  • Konversi fraksi desimal ke biner.


Binary Arithmetic

  • Binary arithmetic is essential in all digital computers and in many other types of digital systems.
  • Addition,Subtraction, Multiplication, and Division 


Binary Addition

The four basic rules for adding binary digits (bits) are as follows:
0 + 0 = 0 sum of 0 with a carry of 0
0 + 1 = 1 sum of 1 with a carry 0f 0
1 + 0 = 1 sum of 1 with a carry of 0
1+ 1 = 10 sum of 0 with a carry 0f 1


Binary Subtraction

The four basic rules for subtracting bits are as follows:
0 – 0 = 0
1 – 1 = 0
1 – 0 = 1
10 – 1 = 1 0 – 1 with a borrow of 1


Binary Multiplication

The four basic rules for multiplying bits are as follows:
0 X 0 = 0
0 X 1 = 0
1 X 0 = 0
1 X 1 = 1


Binary Division

Division in binary follows the same procedure as division in decimal.


1’s and 2’s Complements of Binary Numbers

  • The 1’s and 2’s Complements of Binary Numbers are very important because they permit the representation of negative numbers. 
  • The method of 2’s compliment arithmetic is commonly used in computers to handle negative numbers

Finding the 1’s Complement

The 1’s complement of a binary number is found by changing all 1s to 0s and all 0s to 1s.

Example:
1 0 1 1 0 0 1 0 (Binary Number)
0 1 0 0 1 1 0 1 (1’s Complement)


Finding the 2’s Complement

The 2’s complement of a binary number is found by adding 1 to the LSB of the 1’s complement
 


Alternative Method to find 2’s Complement

  • Start at the right with the LSB and write the bits as they are up and including the first 1
  • Take the 1’s complements of the remaining bits 

Signed Numbers

Digital systems, such as the computer, must be able to handle both positive and negative numbers. A signed binary number consists of both sign and magnitude information. The sign indicates whether a number is positive or negative and the magnitude is the value of the number. There three forms in which signed integer (whole) numbers can be represented in binary:
Sign-Magnitude
1’s Complement
2’s Complement

The Sign Bit

The left-most bit in a signed binary number is the sign bit, which tells you whether the number is positive or negative.


Sign-Magnitude Form

When a signed binary number is represented in sign-magnitude, the left-most bit is the sign bit and the remaining bits are the magnitude bits. The magnitude bits are in true (uncomplemented) binary for both positive and negative numbers.



1’s Complement Form

Positive numbers in 1’s complement form are represented the same way as the positive sign-magnitude numbers. Negative numbers, however, are the 1’s complements of the corresponding positive numbers. Example: The decimal number -25 is expressed as the 1’s complement of +25 (00011001) as (11100110)

2’s Complement Form

In the 2’s complement form, a negative number is the 2’s complement of the corresponding positive number


The Decimal Value of Signed Numbers

Sign-Magnitude:

Decimal Value of positive and negative numbers in the sign-magnitude form are determined by summing the weights in all the magnitude bit positions where there are 1s and ignoring those positions where there are zeros. 
    

1’s Complement:

Decimal values of negative numbers are determined by assigning a negative value to the weight of the sign bit, summing all the weight where there are 1s and adding 1 to the result


2’s Complement:

The weight of the sign bit in a negative number is given a negative value


Arithmetic Operations with Signed Number

In this section we will learn how signed numbers are added, subtracted, multiplied and divided. This section will cover only on the 2’s complement arithmetic, because, it widely used in computers and microprocessor-based system .

Addition



Subtraction

Multiplication


Division

The division operation in computers is accomplished using subtraction. Since subtraction is done with an adder, division can also be accomplished with an adder. The result of a division is called the quotient.
Step 1: 
Determine the SIGN BIT for both DIVIDEND and DIVISOR

Step 2: 
Subtract the DIVISOR from the DIVIDEND using 2’s Complement addition to get the first partial remainder and ADD 1 to quotient. If ZERO or NEGATIVE the division is complete.

Step 3: 
Subtract the divisor from the partial remainder and ADD 1 to the quotient.  If the result is POSITIVE repeat Step 2 or If ZERO or NEGATIVE the division is complete. 

Hexadecimal Numbers

  • Most digital systems deal with groups of bits in even powers of 2 such as 8, 16, 32, and 64 bits.
  • Hexadecimal uses groups of 4 bits.
  • Base 16
    • 16 possible symbols
    • 0-9 and A-F
  • Allows for convenient handling of long binary strings.

  • Convert from hex to decimal by multiplying each hex digit by its positional weight.
    • Example:
  • Convert from decimal to hex by using the repeated division method used for decimal to binary and decimal to octal conversion.
  • Divide the decimal number by 16
  • The first remainder is the LSB and the last is the MSB.
    • Note, when done on a calculator a decimal remainder can be multiplied by 16 to get the result.  If the remainder is greater than 9, the letters A through F are used.

  •     Example of hex to binary conversion:
  • Hexadecimal is useful for representing long strings of bits.
  • Understanding the conversion process and memorizing the 4 bit patterns for each hexadecimal digit will prove valuable later.

Binary Code Decimal (BCD)

  • Binary Coded Decimal (BCD) is another way to present decimal numbers in binary form.
  • BCD is widely used and combines features of both decimal and binary systems.
  • Each digit is converted to a binary equivalent.
  • To convert the number 87410 to BCD:
  • Each decimal digit is represented using 4 bits.
  • Each 4-bit group can never be greater than 9.
  • Reverse the process to convert BCD to decimal.

  • BCD is not a number system.
  • BCD is a decimal number with each digit encoded to its binary equivalent.
  • A BCD number is not the same as a straight binary number.
  • The primary advantage of BCD is the relative ease of converting to and from decimal.

Alphanumeric Codes

  • Represents characters and functions found on a computer keyboard.
  • ASCII – American Standard Code for Information Interchange.
    • Seven bit code: 27 = 128 possible code groups
    • Table 2-4 lists the standard ASCII codes
    • Examples of use are:  to transfer information between computers, between computers and printers, and for internal storage.
 sumber : https://onlinelearning.uhamka.ac.id/

Wednesday, March 24, 2021

Tugas 1 Rangkuman Konsep Digital

Pendahuluan

  1. Kata digital diturunkan dari cara komputer membentuk proses perhitungan, dengan cara menghitung digit bilangan.
  2. Aplikasi teknologi digital: Televisi, sistem komunikasi, radar, navigasi dan sistem pemanduaan, sistem militer, instrumen kedokteran, Pengaturan proses industri dan lain – lain. 


Kuantitas Digital Analog

  1. Kuantitas Analog mempunyai nilai – nilai yang kontinu.
  2. Kuantitas Digital mempunyai seperangkat nilai – nilai diskrit.
  3. Analog : sebuah kuantitas yang dilambangkan sebagai tegangan, arus atau pergerakan meter yang sebanding dengan nilai kuantitas.
  4. Digital : kuantitas yang dilambangkan dengan ketidak-sebandingan kuantitas tetapi dengan simbol – simbol yang dinamakan digit.

Keuntungan Sistem Digital Terhadap Sistem Analog

  1. Lebih handal dari pada sistem analog karena mempunyai kekebalan yang lebih baik terhadap noise dan keakuratan sistem.
  2. Mudah dalam perancangan:  Tidak membutuhkan keahlian matematika khusus untuk menggambarkan perlakuan rangkaian digital (logika) sederhana.
  3. Dapat diprogram kedalam komponen.
  4. Kecepatan: sebuah elemen logika digital dapat menghasilkan sebuah keluaran lebih kecil dari pada 10 nanosecond (10-8 seconds).
  5. Ekonomis: Karena penggabungan jutaan elemen logika digitak dalam sebuah chip tunggal menghasilkan IC berbiaya rendah.

Digit Biner

  • Sistem bilangan konvensional menggunakan 10 digit: 0,1,2,3,4,5,6,7,8, dan 9
  • Sistem bilangan biner menggunakan hanya 2 digit: 0 dan 1
  • Kedua digit biner dibentuk 0 dan 1
  • Kedua digit biner juga disebut LOW dan HIGH, dimana LOW = 0 dan HIGH = 1



Operasi Logika Dasar

Rangkaian logika dasar merupakan komponen yang hanya akan digunakan di praktikum


Operasi NOT

  • Ketika input adalah LOW, maka Output adalah High
  • Ketika input adalah HIGH, maka Output adalah LOW
  • Level logika keluaran selalu berlawanan dengan level logika masukan


Operasi AND

  • Ketika setiap input adalah LOW, maka output adalah LOW
  • Ketika kedua input adalah HIGH, maka kedua output adalah HIGH

 

     Operasi OR


  • Ketika setiap input adalah HIGH, maka output adalah HIGH.
  • Ketika kedua input adalah LOW, maka   kedua output adalah LOW.


Fungsi Rangkaian Terpadu-Tetap (Fixed-Function IntegratedCircuits)

    Bentuk – bentuk paket IC:

  • Dual in-line package (DIP)
  • Small-outline IC (SOIC)
  • Flat pack (FP)
  • Plastic-leaded chip carrier (PLCC)
  • Leadless-ceramic chip carrier (LCCC)


sumber : https://onlinelearning.uhamka.ac.id


Fasilitas Online Learning UHAMKA Mempermudah Mahasiswa Belajar Virtual

Online Learning UHAMKA (OLU) adalah sebuah terobosan yang krusial demi memenuhi kebutuhan mahasiswa UHAMKA dalam menuntut ilmu tanpa harus ...